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Abstract We study hyperbolic systems with singularities and prove the coupling lemma
and exponential decay of correlations under weaker assumptions than previously adopted in
similar studies. Our new approach allows us to study the mixing rates of the reduced map
for certain billiard models that could not be handled by the traditional techniques. These
models include modified Bunimovich stadia, which are bounded by minor arcs, and flower-
type regions that are bounded by major arcs.
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1 Introduction

This article is devoted to hyperbolic dynamical systems with singularities. A general class
of such systems was introduced in the fundamental work by Katok and Strelcyn [18]. They
studied maps T: M — M defined on a Riemannian manifold M such that T is a C? dif-
feomorphisms from an open set M \ S onto its image; the closed set S C M is called the
singularities of T. Katok and Strelcyn make the following assumptions on S: the derivatives
of T can only grow mildly near S (they are bounded by a negative power of the distance
to S), and the e-neighborhood U, (S) of S is not too heavy, i.e. u(U.(S)) = O(e?) for some
constant a > 0; here u denotes the 7' -invariant probability measure supported on M. Such
assumptions are sufficient for the construction of stable and unstable manifolds, their ab-
solute continuity, and certain formulas for the entropy of T', see [18]. In particular, stable
and unstable manifolds W*(x) and W"(x) exist at p-almost every point x € M. Moreover,
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if r*(x) and r*(x) denote the distance from x € M to the boundaries d W*(x) and d W"(x),
respectively, then

p(xeM: r's(x) <e) <ce (1.D)

for some constant ¢ > 0; here a > 0 is as above. Moreover, in the studies of ergodic and
statistical properties of T a ‘local’ version of (1.1) plays an important role; we describe
it in the simplest case dim M = 2 (in which case stable and unstable manifolds are one-
dimensional). Let W C M be a smooth curve uniformly transversal to all stable manifolds
crossing it and my denote the Lebesgue measure (length) on W. Then the ‘local’ version of
(1.1) reads

my(x e W:r'(x) <e) <ce’, (1.2)

and a similar estimate holds for r* if W is uniformly transversal to unstable manifolds.

The general studies by Katok and Strelcyn [18] were motivated by billiards; the latter
remain the main (if not only) physically interesting class of systems with singularities. In
billiards, the invariant measure p is smooth and has bounded density, and the singularity
set S consists of smooth compact submanifolds in M of codimension one. If the num-
ber of the smooth components of S is finite, which is the case for Sinai billiards with fi-
nite horizon [12, 29], then clearly u(U.(S)) = O(¢), i.e. a =1 in the above formulas. In
Sinai billiards with infinite horizon, S has countably many smooth components, and this
implies (U (S)) = O(g|In¢gl), but one can conveniently change metric in M so that again
w(U:(S)) = O(e); see [12, Sect. 4.14]. The fact that a = 1 in (1.1)—(1.2) for all Sinai bil-
liards is essential in Sinai’s studies: his so-called Fundamental Theorem and his proof of
ergodicity, see [29] and [12, Chap. 6], work only under the condition a = 1.

In the later studies of finer statistical properties of billiards and related models by Buni-
movich, Sinai, and Chernov [5, 7, 8] and Young [31], the fact thata = 1 in (1.1)—(1.2) played
a vital role, too. Even the introduction of additional (secondary) singularities (separating the
so called ‘homogeneity strips’), which were needed for controlling distortions (see [5, 8]
and [12, Sect. 5.3]), increased the e-neighborhood of all singularities, but the crucial esti-
mates (1.1)—(1.2) with @ = 1 remained in place. We see that all the present approaches to
the studies of ergodic and statistical properties of hyperbolic systems with singularities are
effectively designed for systems with a = 1; these include planar Sinai billiards [8], Buni-
movich’s stadium [20], higher-dimensional Lorentz gases [2], systems of two hard balls of
different masses [10], certain abstract multidimensional models [7], and others.

Recently we extended [13, 14] these studies to various non-traditional planar billiards
such as a pinball machines in a box, skewed stadia, and flower-type tables. In these models,
hyperbolicity is weak in the sense that expansion and contraction are not uniform. Then
one needs to find a subset M; C M such that the first return map 77 : M| — M, is strongly
hyperbolic, i.e. its expansion and contraction are uniform. We call M, a reduced space and
T\ a reduced map; it preserves the measure p conditioned on M,. As a rule, the reduced
map has more complicated singularities S; C M, than the original map, i.e. S; is usually a
much larger set than S N M;.

As a result, the p-measure of U, (S;) may be much larger than that of U,(S). However,
in all the new models covered in [13], we still have w(U(S))) = O(¢), i.e. the reduced map
satisfies the estimates (1.1)—(1.2) with a = 1. In fact our proofs are based on the follow-
ing one-step expansion condition for unstable curves, which holds for the collision map in
dispersing billiards and for the reduced map in the above mentioned weakly hyperbolic bil-
liards. Given an unstable curve W (i.e. a curve whose tangent vectors lie in unstable cones),
let us denote by W; C W the connected components of W \ S, i.e. the segments of W on
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which T is smooth, and by A; the (minimal) factor of expansion of W; under T'; then we
require that

liminf  sup ZA;1<1, (1.3)

800w wi<sp

where the supremum is taken over unstable curves W of length < §y. This condition quite
easily leads to (1.1)—(1.2) with a = 1, see [13].

On the other hand, there are plenty of physical models where (U, (S;)) = O(e“) only
witha < 1, and (1.1)—(1.2) only hold for a < 1. These include large classes of planar chaotic
billiards introduced by Wojtkowski [30], Markarian [19], and Donnay [17], and even more
physically interesting gases of hard balls on a torus [25-28] and in a box [24]. And there
are no working methods developed for the studies of statistical properties for these systems.
Though we cannot go that far yet, we are making steps in this direction.

In this paper we develop methods that can handle some systems with a < 1. Our ap-
proach is rather general, but we also present two examples—two Bunimovich billiard tables
described in [13]. In those tables, there exist arbitrarily short unstable curves W C M for
which, in terms, of (1.3), A; ~ 1/i for alli > iy =iy(dy), i.e. the series (1.3) diverges. Thus
the methods of [13] do not apply, but our new method presented here works and allows us
to fully investigate the mixing rates in this difficult case. We include the analysis of those
two billiard tables in the end of our paper, as our main goal is the extension of the existing
techniques to some general systems with a < 1.

Now we describe our work on some technical level. Young [31, 32] has considered ab-
stract hyperbolic systems and gave sufficient conditions under which the dynamics can be
represented in a ‘semi-symbolic’ way, by a tower map, leading to exponential mixing rates.
The tower method is powerful, but constructing a tower in real systems, like billiards, in-
volves fairly hard labor [31]. Chernov [8] somewhat simplified Young’s construction reduc-
ing it to the verification of a certain set of conditions for just one iterate of the map (without
having to deal with its higher powers). This approach was put into a more abstract form
in [13] and applied to several classes of billiards.

There is an alternative technique, avoiding the tower representation altogether, based on
coupling of the images of probability measures [32]. It is quite explicit and dynamical, and
it is formalized in the so-called coupling lemma (see [10] and [12, Chap. 7]). The coupling
method leads to a somewhat sharper estimates on correlations and more direct proofs of
some limit theorems [12, Chap. 7]. Though generally it is weaker than the tower construction
(see [11]), the main element of the coupling lemma—the magnet, see [12, Chap. 7]—can
be defined so that it serves as the basis of Young’s tower, hence producing the tower (and
all its benefits) as well. We use this approach here, i.e. we prove the coupling lemma and
additionally construct Young’s tower.

Lastly we address our assumptions on the singularities of the map. The construction of
stable and unstable manifolds can be done under very general assumptions on S; see [18].
The construction of natural invariant measures (SRB measures) and the studies of their er-
godic properties can be done under similar assumptions on S; see [1, 21, 23]. But our studies
of fine statistical properties of SRB measures require more restrictive assumptions on S—
we assume that S is a piecewise smooth set and has a structure somewhat similar to billiard
singularities. Though we do not need standard bounds on the complexity of singularities
[16, 31], as this property is incorporated into our one-step expansion condition (3.8) gener-
alizing (1.3).

As a last remark, we restrict our studies to two dimensional maps, i.e. assume that
dim M = 2. This will keep our presentation simpler and cleaner, though our methods ex-
tend to higher dimensions, as will be explained in the end of Sect. 3.
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2 Statement of Results

Let T: M — M be a C? diffeomorphism of a two dimensional Riemannian manifold M
with singularities S, i.e. 7 maps M \ S onto 7(M \ S) diffeomorphically. In our studies S
is a finite or countable union of smooth compact curves. Assume 7' preserves a probability
measure /.

For any pair of integrable functions (observables) f, g in Llﬂ (M), the correlations of
f oT" and g are defined by

cf,g<n>=/ (foT")gdu—/ fdM/ gdp, neN. @.1)
M M M
It is well known that 7 : M — M is mixing if and only if

lim Cr(n) =0, Vf.ge L (M). (2.2)

Accordingly, the rate of mixing of T is characterized by the speed of convergence in (2.2)
for smooth enough functions f and g (Holder continuity of f and g is sufficient for smooth
maps, and a weaker property—dynamical Holder continuity defined in Sect. 3—is enough
for maps with singularities). We say that (7', ) enjoys exponential decay of correlations if
for any pair of dynamically Holder continuous functions f, g, there exists b = b(f, g) > 0
such that any n e N

ICre(m)] = C.flge_bn

(b only depends on the Holder exponents of f and g). Otherwise if it can only be proved
that

ICreml=Cren™

for some a > 0, we say T enjoys polynomial decay of correlations.
In Sect. 3, we list our assumptions (H.1)-(H.5) on the map 7.

Theorem 1 Under the conditions (H.1)-(H.5), the system (T, i) enjoys exponential decay
of correlations.

We also prove Coupling Lemma, whose statement is rather technical, it is given in Sect. 7,
and construct Young’s tower.

Our paper is organized as follows. In Sects. 3-8 we deal with general hyperbolic maps
with singularities. In Sect. 3 we list our basic assumptions, (H.1)—(H.5), including the new
one-step expansion estimate (3.8). In Sect. 4 we introduce our main technical tool—unstable
curves with regular probability densities on them (standard pairs and standard families). In
Sect. 5 we prove that short unstable curves grow exponentially fast (this important prop-
erty is formalized in various Growth Lemmas). Then we construct a special rectangle (the
“magnet”) in Sect. 6, after which we prove the Coupling Lemma, which directly implies
Theorem 1, in Sect. 8. Lastly, as applications, we present two classes of billiards in Sect. 9.

3 A General Theorem on Exponential Mixing

In Sects. 3-8, we work with abstract hyperbolic maps, 7: Q2 — €2, with singularities. As-
suming w is a T-invariant mixing measure and 7" has singularities, we give sufficient con-
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ditions for exponential mixing. Here 2 denotes a two dimensional connected compact Rie-
mannian manifold. We first introduce general conditions (H.1)-(H.5), which will be as-
sumed throughout Sects. 3-8.

Let d denote the distance in €2 induced by the Riemannian metric p. For any smooth
curve W in €2, denote by |W| its length, and by my the Lebesgue measure on W induced
by the Riemannian metric py restricted to W. Also let vy = my /|W| be the normalized
(probability) measure on W.

(H.1) Hyperbolicity of T (with uniform expansion and contraction). There exist two fam-
ilies of cones Cy (unstable) and C; (stable) in the tangent spaces 7, €2, for all x € €2, and
there exists a constant A > 1, with the following properties:

(1) DT(CY) Cc Cy, and DT (C3) D Cy, whenever DT exists.

) IDT@)[ = Allv].YveCy and DT~ ()] = Allv|l.Yv € C}

(3) These families of cones are continuous on €2 and the angle between Cy and Cj is uni-
formly bounded away from zero.

We say that a smooth curve W C 2 is an unstable (stable) curve if at every point x € W
the tangent line 7, W belongs in the unstable (stable) cone C¥ (C{). As usual, acurve W C
is an unstable (resp. stable) manifold if 77" (W) is an unstable (resp. stable) curve for all
n >0 (resp. <0).

(H.2) Singularities and smoothness. Let Sy be a closed subset in €2, such that M := Q\ S
is a dense set in 2. We put Si; = TT'S,. We make the following assumptions:

(1) T:M\ S, — M\ S_, is a C? diffeomorphism.

(2) Sy U S; is a finite or countable union of smooth, compact curves in 2.

(3) Curves in Sy are transversal to stable and unstable cones. Every smooth curve in S
(resp. S_; ) is a stable (resp. unstable) curve. Every curve in S; terminates either inside
another curve of S; or on Sj.

(4) There exists 8 € (0, 1) and ¢ > 0 such that for any x € M \ S,

ID. T <cd(x,8)". (3.1)

The last condition is standard in [18]. In all billiards this condition holds with § = 1/2;
see [12].

Remark 1 In dispersing billiards, there are natural (primary) singularities, where the map T
fails to be smooth, and additional (secondary) singularities—the boundaries of the homo-
geneity strips; the latter are added to 92 in order to guarantee the distortion bounds (3.6);
see [12, Chap. 5] for a detailed description. This makes unstable manifolds homogeneous
manifolds.

Remark 2 For convenience we assume that the lengths of unstable/stable manifold are uni-
formly bounded (by a constant, C),). This is not a restrictive assumption, as one can always
partition €2 into finitely many domains in which the unstable manifolds have bounded length,
and include the boundaries of those domains in the singularity set.

Whenever we say ‘the singularity of 7°, we refer to S: = S;. Denote Sy, =
n—1

o TT*S11 and Sioo = U2 TTS41. Foreach n € N, S, is an union of stable curves and
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S_,, is an union of smooth unstable curves. Note that S, could be a dense set in M. Let
&" be the partition of M into the connected components of M \ S,,. We denote £° = M \ Sy,
and £ = M \ S_. Note that any unstable manifold W* is a connected component in &,
usually with two end points in S_.

Definition 1 For every x, y € M, define s (x, y), the forward separation time of x, y, to be
the smallest integer n > 0 such that x and y belong to distinct elements of £”. defines a met-
ric on M. Similarly we define the backward separation time s_(x, y). A function f: M — R
is said to be dynamically Holder continuous, if there are 9 € (0, 1] and Cy > 0 such that
for any x and y lying on one unstable manifold W*

If @) = fFl < €™ (3.2)
and for any x and y lying on one stable manifold W*

Ifx) = fFOI = Cpoy ™, (3.3)
We denote by ’H§ . the space of functions that satisfy only (3.3) or (3.2) with fixed ;.

Remark 3 Note that by uniform hyperbolicity, any ordinary Holder continuous function is
automatically forward and backward dynamically Holder continuous. but on the other hand,
a dynamically Holder continuous function can be only piecewise continuous. For example,
if A is an union of some unstable manifolds, then the characteristic function y 4 is backward
dynamically Holder continuous.

(H.3) Regularity of smooth unstable curves. We assume that there is a T-invariant class of
unstable curves W C M that are regular in the following sense:

(1) Bounded curvature. The curvature of W is uniformly bounded from above by a positive
constant B.

(2) Distortion bounds of T. There exist y € (0, 1) and Cr > 1 such that for any regular
unstable curve W C M and any x,y e W,

[In Jw (x) — In Jw (¥)| < Crd(x,y)” 3.4

where Jw(x) = |D,T |1, w| denotes the Jacobian of T at x € W.
(3) Absolute continuity. Let W;, W, be two regular unstable curves close to each other.
Denote

W ={xeW W xNW;_; #0}, i=1,2.

The map h : W] — W} defined by sliding along stable manifolds is called the holonomy
map. Assume h,m Wy < My Furthermore, h satisfies the distortion bound:

Jh(y)
Jh(x)

<Cro*tEY | Vx,ye W, (3.5)

'ln
where Jh is the Jacobian of h.
We will only consider regular unstable curves.
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Remark 4 Note that (3.6) and the uniform hyperbolicity implies that for any smooth curve
inWCM,any x,ye W,if 0 <k <s,(x,y), then

< Sk, (3.6)

k
‘ln Jka(X)

jw()’)

where jvkv (x) is the Jacobian of T¥ at x € W and ¥ = A~7, C, = Cr /(1 — ©). Furthermore,

notice for any n € N and any unstable curve W in one connected component in £", the
expansion factor is almost constant on W by choosing n large.

(H.4) SRB measure. p is a Sinai-Ruelle-Bowen (SRB) measure. This means that for any
unstable manifold W* the conditional measure pwy« on W induced by p is absolutely
continuous with respect to my«. We also assume that p is mixing.

We note that under our other assumptions, the existence and finitude of SRB measures
can be derived by standard arguments (the finitude means that there are finitely many ergodic
SRB measures, and each of them is mixing up to a cyclic permutation). But we do not pursue
the goals of constructing SRB measures and establishing their ergodic properties, see e.g.
[1, 21, 23]. Since © might not be the unique SRB measure, from now on, whenever we pick
initial points (or stable/unstable curves) we take them from the basin of p automatically
without emphasizing.

Remark 5 The density function py« = dpwu /dmyu satisfies

pwe(y) i J"B)
= um
pwu(z) o0 JT7(z2)

3.7

for any y, z € W". This is a standard formula in ergodic theory, see [12, p. 105]. For any
unstable manifold W* C M, the unique probability density pw« satisfying (3.7) is called the
u-SRB density, and the corresponding probability measure pwy« on W* is called the u-SRB
measure.

For any m € N, the partition £” induces an index set M /£™. Denote V,, as the connected
component in 7" W with index « € M /€™ and W, = T~'V,,. Next comes our main assump-
tion.

(H.5) One-step expansion. There exists g € (0, 1] such that

IWl>q |Wal
. <
Vel W]

liminf sup Z( 1, (3.8)

80—0 .
0 Wi Wl<do , S

where the supremum is taken over all unstable curves W C M.

Remark 6 For any index subset A, we define
AMA) =Ty (Vy | @ € A),

then (W/&!, A isa probability space. Thus the inequality in (3.8) can be written as follows:

. IWI\? .+
liminf  sup di(a) < 1. 3.9)
%0=0  w:w|<sy Jaew/e! Va
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This has a clear intuitive meaning: if we regard ¢,(V,) := [V,|™? as a measurement of the
length of the curve V,; then (3.9) says that the average of this quantity decreases at each
iteration; in that sense the components of the images of short unstable curves grow, on
average.

Remark 7 Our assumption (H.5) can be extended to multidimensional hyperbolic systems,
even though the ‘size’ |W| of an unstable manifold of dimension > 2 has no clear meaning.
Instead, we define

(W) =/ [dist(x, 0W)]™? duy,
w

where vy again denotes the normalized Lebesgue measure on W, and replace (3.8) with

liminf  sup [;(W)]‘I/ C(Vy) di(a) < 1.
M/E!

%0—=0  w: diam(W)<8y

Now most of the results obtained in this paper carry over to higher dimensional case, but we
do not pursue this goal here, as we do not have specific applications yet. We hope to do it in
a separate paper.

4 Standard Families of Unstable Curves

By uniform hyperbolicity (H.1), 7" expands any unstable curve W C M at least by a fac-
tor A". At the same time, 7" (W) gets broken by singularities into pieces. In this process,
arbitrarily short pieces may appear, and the total number of pieces may grow exponentially
with n or become infinite. Thus the hyperbolicity of T only guarantees exponential growth
of unstable curves in a local sense. Accordingly, we do not expect an uniform growth for
every component in 7" (W), but still hope there is a certain growth at least on average at
each step.

From now on we denote by W unstable curves, by C various large constants and by ¢
small constants.

Definition 2 Fix C, as defined in (3.6). A probability measure v on  supported on an
unstable curve W is called regular, if v is absolutely continuous with respect to the Lebesgue
measure vy, such that the density function f satisfies

|In £ (x) —In f(y)] < Cep* &, 4.1)
In that case (W, v) is called a standard pair.

If v is a regular probability measure supported on W C M \ &£", for some n € N, then
it is equivalent to the probability measure vy induced by the Lebesgue measure my in the
following sense:

e v (A) < v(A) < S U (A). 4.2)
It follows from (3.2) that

e*Crﬂ“ < mingew f(x) < m'C:‘Xer fx) < ecrﬂ’l
maXew f(x) ~ minew f(x)

’
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which implies
e TIWIT < fa) < e W

Clearly, as n gets larger, the regular measure v becomes almost uniform on W. From now
on, we denote

cp=er. 4.3)
Then for any regular measure v on W,
e o vacw, (4.4)
uw (4)

Note that for any standard pair (W, v), T,.v is a measure supportedon TW = |, et Vo
We extend the transformation 7 on (W, v) as follows: the image of the standard pair (W, v)
under T can be viewed as a collection of pairs {(V,, v,) : & € W/£'}, where v, is the con-
ditional measure of 7,v on the smooth component V,,. Now we extend our definition of
standard pairs:

Definition 3 Let {(W,, v,)}, @ € Abe a (countable or uncountable) family of standard pairs.

We call it a standard family if there exists a probability factor measure A on .4, which defines
a measure vg supported on W = {W,, | « € A} by

Vg (B) :/ ve (BN W,)di(e) VB C Q. (4.5)
acA

The measure vg can be regarded as the ‘weighted sum’ or a ‘convex sum’ of the measures
v, on individual standard pairs. For simplicity, we denote a standard family by G = (W, vg).

Lemma 1 If (W, v) is a standard pair, then T (W, v) is a standard family.

Proof Let (W, v) be any standard pair. The density function of T, v can be written as

FT™' ()
J(T(x)

Note that for any x, y belong to the same smooth component V,, C T (W),

fix) = Vx e T(W).

[In £ (x) —In fi(y)]
<I|Inf(T7'x) —In f(T"'y)|
+ I J(T~'(x) =T (T ()]
< (Cp+ Cp)ps+T 2771y
= (Cp + Cp)9s+E N+ < s+

This implies for each « € W/&!, (V,, v,) is a standard pair, where v, is the conditional
measure of T,v on V,. Furthermore, for any A in the index set, let

AMA) =Tw(Vy |a € A),

then T, v satisfies (4.5). Accordingly, T (W, v) is a standard family. O
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624 N. Chernov, H.-K. Zhang

In general, if G = W, vg) is a standard family with a factor measure A and satisfies
(4.5) then T"vg induces a standard family with TG := (T"W, T]'vg), where for n > 0 and
measurable set B C €2,

T"vg(BNT"W) := / T, (B N T"W)dA(a). (4.6)
acA

Let § denote the collection of all standard families G in M. For any p € (0, g], define a
characteristic function Z, on §, such that for any G € ¥,

Z,(9)= / [Wel ™7 dr(a). @7
A
Let §,, denote those G € § such that Z,(G) < oo.

Lemma 2 Let p € (0,q], and n > 0.

(1) If G € §,, consists of a single curve W, denote
M(A)=T'vg(Vy |a € A)

Sfor any smooth component V, CT"W and A C W /E" then
Zp(Tng) :/ Zp(ga)d)"n(a)
wysn
(2) IfG €, consists of W= e 4 Wa With L(A) = vg(Wy, a € A), then
Z,(T"G) ::/ Z,(T"Gy)dA (o).
A

Proof (1) follows directly from the definition of Z,. So it is enough to show (2). If n =0, it
follows from the definition that

1
Zp(g)Z/A |Wa|pd/\(a)=[42p(ga)dk(a)~

If n > 0, then for each smooth curve W, in W we introduce the measure A}, on the index
space W, /&" such that for any 8, € W, /§",

}\g(ﬂa) = Tﬁva(vﬂa)v
where Vj is a smooth component in 7" (W,,). Denote A, = {W,/£" : « € A} and define a
measure A" on A, such that for any g, € W, /§" witha € A, we have A" (B,) = AL (Bo) A ().
Then T'v is a weighted sum of regular measures

{vg, rx € A, By € W, /E"Y,

where vg, is the measure 7,'v, conditioned on Vpg,. Note that
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On Statistical Properties of Hyperbolic Systems with Singularities 625

2,(1"g) = / Vo |7 X (Bo)

n

=// |V |77 dig (Ba) dA (o)
A waen

= / Z,(T"Gy)dA(@). 0
A

The value of Z,(T"G) characterizes, in a certain way, the “average size" of the smooth
components in 7" (W), the larger they are the smaller Z,(7"G) is. For example, if G € §,
is supported on W C M \ S,, then forany k=1, ...,n,

Z,(Tv) < AP 2,(9).

Notice T*W is smooth for any k =1, ..., n, so for any p € (0, g1,

ko —
Z,(T,v) = —lTkW|1’
_Tewpr w1
CTFWIE I TWP WP
< AP*Z,00).

Lemma 3 There exist §y > 0 and 6 € (0, 1) such that for any standard pair G = (W, vy),

(1) ifIW| < 8o, then Z4(TG) < 0Z2,(9);
(2) if IW| > 8, then Z,(TG) <465,".

Proof By (3.8), there exists 8y > 0 such that

IWIN?
f:= sup di(a) < 1. 4.8)
wiwl<so Jwyet \ | Val

This implies for any |W| < &,

di(@) <0Z,(G). 4.9)

1
Z,(TG :/
«(79) wyel | Val?

On the other hand, if |W| > §;, we divide (W,vy) into k = [|[W|/6] + 1 pieces
{(Wi,v1), ..., (W, v0)} with |W;| € [80/2, 80), and v; being the conditional measure of
vy on W;. Clearly, each G; := (W;, v;) is a standard pair, for any i =1, ..., k. Then by the
first statement, we have

2,16 <02,G) = —— <o(2)’ (4.10)
ST e = &) '

Note that the set {V, |« € W;/&', i =1, ..., k} contains more short pieces than T (W). It
follows that
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k
1
2T <> Y o Tow (Ve)

i=1 aew, /¢!

k
:Z Z ﬁT*UW[(Va)'UW(Wi)

i=1 gew; /g!

8o <
= W qu(Tgi)

i=1

k
8 _
< —m‘jle > 2,(G) <408,".

i=1

This proves the second statement. ]

Next we will show that the value of Z,(7"G) decreases exponentially in 7 until it be-
comes small enough. This will imply that in any standard family, small unstable manifolds
grow exponentially in size on average.

Lemma 4 There exists C > 0, such that for any standard pair G = (W, vy) in §, and any
n >0, one has

Z,(T"G)<6"Z,(G)+C. “4.11)
Proof We first prove the following formula
Z,(T"G) <0"Z,(G)+Ci(0+---+6"), (4.12)

where C; is an uniform constant. The formula (4.12) can be proved by induction on n. If
n = 1, it follows from Lemma 3 that

Z,(TG) =0Z2,(9) + C10, (4.13)

where C; =48,?. Assume that (4.12) is proved for some n > 1. Then we apply it to each
component V,, C T (W) with conditional measure v, on W, and obtain

Zq(Tn(Vaa Va)) =< anq(vas Voz) + C1(9 +--- +9n)

By Lemma 2,
Z,(T"NG) = / Z,(T" (Vi ve))dM (@)
w/g!

59”/ 2, (Vo va)dA(@) + C1(6 + -+ 6")
w/egl

1
:9"/ dr(@) + C1(0 + -+ +0")
wyet [ Val? :

=0"Z,(TG)+C1(0+---+06").
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By (4.13), we get
Z,(T"'G) <0 Z,(G) + (0 +---+0"T)C).
Combining this with Lemma 3 gives (4.11) for C=C,/(1 —6) + 1. |

The above results can be extended to any unstable curve W equipped with any regular
measure v and any standard family G € §,.

Lemma 5 There exists C, > 0, such that for any standard family G € §, and n > 0,
2,(T"G) < ¢10"2,(G) + C,. 4.14)
where c is defined as in (4.4).
Proof If G = (W, v) € §,, then it follows from Lemma 4 and (4.2) that
MA) =TV, laeA) < Toy(V, |acA),
where A is a subset in the index set. This implies
Z,(T"(W,v)) <e&""0"(2,(W,v) + C). (4.15)
Let W= {W, |« € A}. We first apply (4.15) to each W,, with conditional measure v,:
Z,(T" (Wy, 0)) < e (0" 2, (W, vg) + C). (4.16)

Note that by Lemma 2,

Z,(T"G) = /AZq(T”(Wm ve))dA(@).
It follows from (4.16) that
Z,(T"G) <c10"Z,(G) + Cy,
where C, = CeSr. U
We see that if Z,(G) is very large, the sequence
{Z2,(T"G),n e N}
will decrease exponentially fast until it reaches a certain threshold. In particular, for any
p € (0,q), (3.8) also holds for g replaced by p. Thus Lemmas 3-5 are still valid if we
replace g by p. This implies that even if Z,(G) is very large for some p € (0, g], eventually,

Z,(T"G) will be under control and less than certain fixed constant.

@ Springer



628 N. Chernov, H.-K. Zhang

5 Growth Lemmas

Growth Lemmas show that expansion always prevails over fragmentation. Here the Growth
Lemmas follow from our one-step expansion (3.8).

Let G = (W, vg) be a standard family. To get a better control of 7"G, we need to estimate
the size of “bad” points in VW whose images under 7" get too close to the singular set S_,,.
For any ¢ > 0, n € N, define

B (W) :={x e W: |V, (x)| <2¢,a e W/E"}. 5.1

Clearly, the set B, ,()V) contains points in W whose 7" images are contained in short
unstable curves. Let

F.(e) =vg(B.,(W)), neN (5.2)

be the distribution of B , (V) in the probability space 7"G. In fact we will see, for “typical”
regular standard families G, F, (¢) will decay exponentially in n. Given any standard family
G = (W, vg), for any x € W, denote ryy, (x) or rg(x) as the shortest distance from x to aW
measured along G.

Lemma 6 There exists ¢ > 0 such that for any p € (0, ql, and standard family G € §,, any
e >0andn >0, we have

Vg (rg, (x) <€) <(c16"Z,(G) + Cyp)e”, (5.3)

Proof Denote by A, C W/&", such that for any « € A,, |V,| < 2¢. Thus

Zp(T"(])=/ IValfpd?»”(a)>/ [Vo|™PdA" (o)

wyEn e

= 8_p/ dA" (@) = S_IJVQ (Bé‘n(w))

£

Note that for any n > 0, the set {x € W : rg, (x) < &} contains two parts. One is B, , (W),
and the other is

D, :=T"{yeVy,:dy,(y,0V,) <&, €A},

where dy, (, ) is the distance measured along V, . Since for any o € A¢, |W,| > 2¢. Thus the
measure of D, is bounded by

2¢
vg(Dy) <1 f 2 4F, (s)

(2e,00) S

<20ie [ 15 AR (5) = 26167 2,(170),
(&,00)

where ¢, is the constant defined in (4.3) and F,, is the distribution defined as in (5.2). This
implies

Vg (rg, (x) < &) < vg(Ben(WV)) + vg(Dy)
<ce?Z,(T"G) 54

where ¢ =1 + 2¢;. O
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Motivated by the above lemma, we introduce the notion of proper families whose char-
acteristic functions are uniformly bounded. Let

; (5.5)

be a very large constant. Given a standard family G, if Z,(G) < Cq we say G is a proper
standard family. Denote by §; = Z 1(0, C4] the set of all proper standard families in M.
Similarly, for p € (0, g), denote §), = Z;l (0, Cy + 1] as the set of all proper standard fami-
lies in M with respect to p. Note that for p < ¢, §, C §,.

Corollary 1 For any p € (0,q] and G € §,, there exists N = N(G), such that for any
n>N,T"'G e S*I‘,. In particular, there exists 5> 0, for any unstable curve W C M with

length > $ and regular measure v on W, (W, v) € SZ.

Corollary 2 For any p € (0, ql, there exists ¢ > O such that for any G € §*, any ¢ > 0 and
n=0,

vg(rg, (x) < &) <ce”. (5.6)

Next we state the Growth Lemmas similar to that of [12, Chap. 7], which follows from
Lemma 5 and Lemma 6.

Lemma 7 (First Growth Lemma) There exist constants ¢ > 0,C > 0 such that for any
e € (0, 1) and any standard pair G = (W, v), we have

v(rg, (x) <g&) <cv(rg(x) <0"e?) + Cef. 5.7

Lemma 8 (Second Growth Lemma) There exist constants ¢ > 0, x > 0 such that for any
standard pair G = (W, v), G, € S; forany n > x|In|W||. Furthermore, for any ¢ € (0, 1),

v(rg,(x) <e) <ce!, Vn>x|In|W]||. (5.8)

The Growth Lemmas imply that a standard pair (W, v) will eventually be proper in g,
after a certain number of iterations. But for arbitrary standard family G, its images might
not belong to §. It all depends on the distributions of short unstable manifolds in G. By
choosing p < g, we still might guarantee that 7"G belongs to §, for all large n. As we
will see that the existence of such a p € (0, g] is good enough for the proof of the Coupling
Lemma. The Growth Lemmas guarantee that for any large »n, the n-th image of any standard
pair (W, v) is a proper family. Thus the set of points on 7" W which come too close to
the singularity set has very small measure. We still need to prove the corresponding global
estimates.

Note that for any x € M \ S_o,, W"(x) exists and connects x with S_.,, see [12, pp. 93—
95], so we define d“(x, S_) as the distance from x to S_, along W"(x). Let U¥(S_w)
be the e-neighborhood of S_., in the d" metric. Denote by r,(x) = d“(T"x,S_«), and
r'(x) =d"(x, S_). Similarly, we define d*(x, So) and U;(S). Given a standard family
G = (W, v), if W is made of maximal unstable manifolds, then the shortest distance from
x to YV measured along W is r(x). This implies rg, (x) = r,(x), for any n > 0 and any
x eWw.
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Lemma 9 There exists ¢ > 0 such that for any x € M \ S,

rf(x) > ingéA"rn (x). (5.9)

Furthermore, there exists an uniform constant ¢ = c¢(T) > 0 such that for any proper stan-
dard pair G = (W, v),

v(r'(x) <e) <ce?'P. (5.10)

Proof For every x € M \ S, there exists C> 0, such that
r(x) > ,ilrzlgé’A”d‘Y(T”x, S). (5.11)
The above inequality follows from a similar argument as in the proof of Lemma 4.67 in [12].

By the uniform hyperbolicity of the map T, there exists ¢ > 0, such that for any x € M, if
T W*(x) hits the singularities Sy at its boundary, then according to (H.2) we have

dy (Tx,8_1)7F < &dy (x, Sp)
<Cd(x,8) < Cd*(x, ).
Hence
1
ri(x) > ingmnr,kf‘ (x). (5.12)
Therefore
° i
v(r'(x) <e) < Zv(r,,l_ﬂ x) < Ef'Af"e).
n=0
Due to the Second Growth Lemma,

V(ra(x) < (@ 'AT"e)' )
< Ci(AT"eN)! P,
Summing over all n > 0, we prove (5.10). ]
The above lemma recovers the fact that on any long unstable manifold W*, a majority of
points y € W* have long stable manifolds stretching far beyond W* on both sides of W*.

Denote by W* the family of all maximal unstable manifolds in M \ Sx.

Lemma 10 For any small k > 0, define

N,(zﬂ(xeer,,(x)Z%) (5.13)
n=0

Then there exists d > 0 such that for any proper family G = (W, v) € §, with W C W"

V(N,) >d. (5.14)
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Proof Note that for any x € (N, )¢, there exists n > 0 such that r,(x) < k A™". By Corol-
lary 2, there exists ¢ > 0 such that

o0 o0
Y o) <kATY Y kP ATV < euie?
n=1 n=1
Thus v(N,) >d, whered =1 — ¢ k?. O

Lemma 11 There exists ¢ > 0 such that for any small ¢ > 0 one has
(U (S-x0)) < ce?, (U (Sx)) < ce?. (5.15)

Proof Let W" be a maximal unstable manifold with length larger than § contained in the
basin of . According to the Second Growth Lemma, there exists ¢ > 0 such that for any
n>0,

vy (r,(x) <€) <ce?.
On the other hand, for eachn > 1,
T vwu (U (S—00)) < vwu(r,(x) < &) <ce?.

Let

Since (T, ) is mixing, so there exists a subsequence 7, that converges to u i.e.
lim,,_, oo N, = p. For detailed reference, see [1, 21-23]. This implies

W(UM(S-0)) < cel.
The second inequality easily follows from Lemma 9. ]

Lemma 12 Let W* be the collection of all unstable manifolds in M. Then £ = (W", ) is
a standard proper family in § ,, for any p < q.

Proof Let £" be the measurable partition of (M, B, (t) into smooth unstable manifolds. Then
A = M/&" is the index set, and for any o € A, u, is the conditional measure of  on the
unstable manifold W, . Furthermore, X is the factor measure associated with the partition.
Note v, has the following properties. First, by (3.7) and the distortion bound, for each o € A,
(Wy, vy) is a standard pair. Second, for every B € B, v, (B N W,,) is a measurable function
of o, and

n(B) :/Va(B N We)di(@).

Thus £ = (W", u) is a standard family. Note that for any fixed § > 0 and p < g,

zp(5)=/|Wa|*1’dk(a)
§ 00
=/ s’deo(s)—i-/ s PdFy(s),
0 8
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where Fj(¢) denote the measure of short unstable manifolds with length |W| < €. The sec-
ond integral is bounded by §77, so it suffices to show that the first integral is bounded.
According to Lemma 11, for any ¢ > 0,

/ Edms) < (UM (S_n0)) < ce?,

which implies that

2e 1 2e sl—p
/ — dFy(s) = / ——dFy(s) <1777
e SP . s

Accordingly, we have

51 < raroq
/oﬁdF(’(s):ZO/s = dFo(s)

om+1

o0
<o 22("_”)'” < 3.

m=0

By choosing 6 small enough, we see that for any p < ¢, £ € §),. a

Growth Lemmas guarantee that for each individual unstable manifold W*, no matter how
short it is, eventually (7" W*, puw«) will be proper in SZ In addition, Lemma 11 indicates
that £ should belong to §,, but we have not achieved this goal. Instead, we will see that
& €§), for p < g, and this will be good enough for our purpose. From now on, we fix p <¢
and only consider proper families in §,.

6 Construction of the “Magnet”

In this section, we will first construct a family of stable manifolds crossing an unstable man-
ifold. It will serve as a “magnet” along which measures will be coupled. For any x € M, let
WS (x) denote the maximal smooth unstable/stable manifold of x. In this section whenever
we say a smooth unstable manifold, we really mean a maximum smooth unstable manifold
with length less than Cy, see Remark 2. For any « > 0, let W/*(x) denote portion of the
smooth unstable/stable manifold centered at x with length 2«x. Denote

o0

M;:ﬂ(xeMU,,(x)z%). (6.1)

n=0

By (5.12), for any x € N3, both W*(x) and W"(x) exist with r*(x) > 2« and r"(x) > 26,
where k = &5.

Note that even if W*(x) has length > 2k, x may not belong to N3, since T"x may ap-
proach to S_,, much faster than s /A". On the other hand, according to Lemma 10 and
Lemma 12, there exists d = d(8) > 0 such that

n(Ns) > d.
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Furthermore, for any unstable curve W with length larger than 58, we have
vy (N;s) > d, (6.2)

where we used the fact that any unstable manifold/curves has length less that Cy,.
For any x € N3, let

() ={W’(y) | y € W§'(x) N Ng}.

Note that I'* is the collection of all maximal stable manifolds along Wsl‘ (x) N N5 which stick
on both sides of W"(x) by at least k. As the length of stable manifolds in I'* (x) maybe very
irregular, so we need to chop off a portion to get our magnet.

Let U(x) be a “rectangular” shaped region such that W, /2(x) C U(x) and Wé‘/z(x) C

U(x). And the boundary d/(x) is made of 2 unstable manifolds with length § and 2 sta-
ble manifolds with length «. Accordingly, the region ¢/ (x) can be viewed as a “rectangle”
centered at x with dimensions § x «.

We say that an unstable manifold W* fully u-crosses I'*(x), if W" meets every stable
manifold in I'*(x). Let I'*(x) be the collection of all maximal unstable manifolds W"(y)
that fully u-cross I'*(x), with y € W*¥(x) NU(x). Define

R(x) =¥ () NT"(x) NUX) N Ny . (6.3)

According to (6.2) and the distortion bound of the stable holonomy map h, there exists
dy > 0 such that for any W € T'%,

vy (WNR(x)) > dy. 6.4)

We fix xo € NJ, and define our magnet by R* := R (xo) and ['$/" =T'/*(x,). The magnet
will be used to couple regular measures supported on unstable manifolds in I'".

Lemma 13 There exists ng > 0, d, > 0, for any standard pair (W", v) with |W"| > 48 and
n = no,

W(T"R* N W) > d. (6.5)

Proof Let H(2) be the set of all closed unstable curves on 2 equipped with the topology
induced by the Hausdorff metric. Then H(2) is compact and complete. Thus the set of all
closed unstable curves of length larger or equal to Sisa compact set in H(€2). This implies
that there exists mo > 0 such that U(x;), ..., U(x,,) is a cover of {x € M | [W"(x)| >
438}. Accordingly, any unstable manifolds with length longer than 48 must be fully u-across
R(x;), for some i < my. Now by the mixing property, there exist ny > 0, and d; > 0 such
that for any n > ny,

W(T"R(x;)) N R*) > d,.

According to assumption (H.3), both 7" and h satisfy the distortion bound. Thus for any
unstable manifold W* with length longer than 45 and a regular measure v on W*, there
exists d» < d; such that for n > ny,

V(W' NTT"R*) > d>. (6.6)
Note that here we used the fact that |W*| < Cy; by the remarks under (H.2). Accordingly,
by (6.4), we get (6.5). O
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Lemma 14 Fix p € (0, q). There exists a positive constant dy € (0, 1) such that for any
G=W,vg) € S’; and n > ng we have vgOV N T "I'*) > d.

Proof For any p € (0,9) and G = OV, vg) € §7, it follows from Corollary 2 that
Vg (B,5,(W)) < ¢(28)?. This implies that for any n > ny,
voOWNT T > vgWNT T, |W,| > 45)
>di (1 —c(26)").

This Lemma says that if G € 8; then for any n > ny, at least dj fraction of 7"G has base
points returning to I'* properly. O

7 Coupling Lemma

In this section, we fix p € (0, ¢], and only consider standard pairs or families in §, built on
regular unstable manifolds.
Let (W, vy) be a standard pair, and define

W={(x,1)|xeW,ztel0,1]}.

Then W is a rectangle based on W. We equip W with a probability measure D, such that for
any (x,t) e W,

ddw (x, ) = dvy (x)dt. (7.1)

Note that the map 7" defined on W can be extended to W with 7" (x,t) == (T"(x),1).
Let G = {(Wy, vw,), a € A} be a standard family with probability measure vg. Then the
rectangles based on W are

é=:(x,t):erWa,re[o, 1]}.

Again we define the probability measure D, such that dig (x, 1) = dvg (x)dt.

Lemma 15 Given any two families G, € € §,, there exists a measure preserving map (the
coupling map) © : G — & with
O(, ) =(y,8),  O.bg =7

and a coupling time function Y defined on G, such that TY*0x and TY®y lie on the
same stable manifold. Furthermore, the coupling time function Y : G — N has exponential
tail bound:

Dg (Y >n) < Cyoy, (7.2)

where C~ is a positive constant, and 9y € (0,2A77).

The main idea of the proof of this lemma is that we first fix a special subset R with
hyperbolic structure as we constructed in last section. Then we try to match the measures
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Vg and Dz according to the simultaneous, proper returns of the unstable manifolds (bases
of regions) to R. At each coupling time Y, a fraction of both measures are matched and
pumped out of the system. Thus the total measure remaining at time » is an upper bound
for |T'Dg — T"Dgl. In next section we will show that the speed of coupling leads to the
rate of decay of correlations. Now we consider an ideal case. At ng, both regions G and
£ have at least d fraction whose base images under 7" properly return R°. If we couple
d = dy/2 fraction, then both regions remain 1 — d fraction of total measure. Assume the two
new families still satisfy the assumptions, then we couple another d fraction of measure after
another n iterations. In this way, after n iterations, we will couple all points on both regions
except (1 — d)" fraction of each measure. This would give us the exponential tail bound for
the coupling time function, which will lead to the exponential decay of correlations.

However, the real situation is that after each coupling, the two remaining density func-
tions do not satisfy distortion bound any more. To guarantee distortion bound, we need to
cut the regions into pieces at the place they got coupled. Thus the base of each region con-
tains tons of arbitrarily short unstable manifolds, which may need arbitrarily long time to
recover. In other words, the corresponding two new families are not proper anymore. More
precisely, notice for any unstable manifold W that fully u-crosses R*, W N'R® is a closed
nowhere dense (Cantor-like) set on W. After coupling, the remaining set will be a countable
union of very short unstable manifolds. Next we need to estimate the recovery time for the
remaining manifolds.

The proof of the Coupling Lemma follows from a similar argument as in [9, 10] and [12,
Sects. 7.12-7.15], which we will not repeat except the following technical changes due to
our general assumption on singularities. Let V be a connected component (or a gap) of
(W\ R*) NU. Then we define the rank of V as the first moment when the image of V is
split into pieces.

Lemma 16 Let V be a connected component (or a gap) of (W \ R*) NU of rank n. There
exists C > 0 such that
IT""'V| > CAPT, (7.3)

where B € (0, 1) was given in (3.1).

Proof Since rank V =n, so T" (V) gets split for the first time. By (6.2) there exists a small
& > 0 such that V N N; is not empty. Let x € V N N, it follows from the definition that for
any m > 1,

rm(x) > c8/A™. 74
Let V; be the smooth component in 7"V that contains 7" x. By (7.4),

Vol = 1, (x) = ¢8/A".

It follows from the regularity of unstable curves that there exists ¢; > 0 such that for the
middle point y € TV,

[Vol < ClJT—lvo(y)ITflVOL

By our assumption on singular curves, there exist ¢, c3 > 0 such that

d(y,81) > c2d(y, 9T ' Vo) > 3|T 7'V
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Accordingly to (3.1), there exists ¢ > 0 such that
clVol <17~ Vol'™*
which implies that for some C > 0,
TVl = (Vo)) /P > CAFT. O

It follows from Corollary 1 that there exists 79 = 19(V) such that for any m > Ao,
T™(V,vy) will be a proper standard family again, where vy is the conditional measure
of a regular measure vy on V. Accordingly, we define recovery time function ry(x) =
no(V) +ng on V. Clearly, the recovery function is constant on each gap and for any n > rp,
T"(V,vy) has at least dy fraction properly return to the magnet R*. Next we estimate the
tail bound of the recovery time function.

Lemma 17 Let (W, v) be a standard pair with |W| > 48 that fully u-crosses R*, for all
n>1,

v(x € W\ W, |rp(x) >n) <const A~ (7.5)
Proof 1t is enough to show (7.5) for the unstable manifold W = W"(x() that defines I'*.
Since then the general case will follow from the regularity of unstable curves. For any x in

the interior of a gap V with rank n, there exists m > n such that r,,(x) < ¢A k. It follows
that

VC U{rm(x) < cA "k}

m=>n

Since (W, v) is proper, by (5.8), for any m > 0,
v(r,(x) <g) <cel.
This implies that there exists C > 0 such that
(V)< CA™",
Summing over all V with stopping time greater than n, we get

v(rp > n) < const A~7". O

This completes our proof of Coupling Lemma. In addition, we can now construct Young’s
tower by using the magnet R* as its base. The Markovness of the returns would be guar-
anteed by the formula (6.1), in the same way as it was done in [8, 31]. The exponential tail
bound follows by exactly the same argument as the proof of Coupling Lemma.

8 Proof of the Main Theorem

Notice that the rate of decay of correlations is actually the speed of convergence of a ran-
dom distribution to the equilibrium state (more precisely, SRB measure). Accordingly, it
is enough to study the rate of convergence in |7)'v — u|, where v is absolutely continuous
with respect to the SRB measure . Let G be a proper family, then any observable g on G
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can be naturally extended to the region G as g(x,1) = g(x). For brevity, we use the nota-
tion (g) = [}, & d 1. The following theorem follows from the Coupling Lemma by a similar
argument as in [9, 10] and [12, pp. 175-177].

Theorem 2 (Equidistribution) Let G be a proper standard family. For any dynamically

Holder continuous function f € H;f NLy(M, 1) andn >0

’/ foT"dvg—/ fdu’ < B0} (8.1)
M M
where By =2Cy(Ky + || fll) and

0y = [max{dv, 19/}]1/2 <1.

Theorem 3 (Exponential decay of correlations) For every pair of dynamically Holder con-
tinuous functions f € H;f NLo(M, 1), g€ ’Hf,rg NLy(M, 1) andn >0

(g~ (foT™M) —(f)(g)] < Breb}, (8.2)

where
07 = [max{ov, 9, 9, e 7)) <1, (8.3)

where
B =Co(Ksliglloo + Kell flloo + 11 fllocllglloo) (8:4)

and Cy = Cy(D) > 0 is a constant.

The above results can be extended to variables made at multiple times. Let fy, fi,
o fr€ H;f,cf’ and

[fillo =1 fllocs  i=1,.... k.
Consider the product f = fy- (fi o T)---(fi o T¥).

Lemma 18 Let G be a proper family in §,. Then there exists B; > 0 such that for any
n=>0,

‘/ foT"dvg —/ fdu‘ < B9} (8.5)
M M

Furthermore, let go, g1, ..., 8k € H*g, and ||gillec = lIgllss> i =1, ..., k. Consider the
product g =go-(g1oT) - (gko T*). Then we can estimate the correlations between ob-
servables f and g as we did in Theorem 3.

Theorem 4 There exists Bf, > 0, foralln >0,
(& (foT™) —(f) ()| < By 0},

where 6y, is the same as in (8.2).
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9 Applications to Billiards

To illustrate our method, we apply it to two classes of billiards for which previous methods
failed. Since these examples play a secondary role, we only sketch the arguments.

First we recall standard definitions, see [4—6, 8]. A 2D flat billiard is a dynamical system
where a point moves freely at unit speed in a domain Q C R? and bounces off its bound-
ary dQ by the law of elastic reflection. We assume that 3Q = |, I'; is a finite union of
piecewise smooth curves, such that each smooth component I'; C dQ is either convex in-
ward (dispersing), or flat, or convex outward (focusing). Following Bunimovich, see [3] and
[12, Chap. 8], we assume that every focusing component I'; is an arc of a circle such that
there are no points of d Q on that circle or inside it, other than the arc I'; itself. Under these
assumptions the billiard dynamics is hyperbolic, ergodic, and mixing.

Let M =00Q x [—7r/2, /2] be the collision space, which is a standard cross-section of
the billiard system. Canonical coordinates on M are r and ¢, where r is the arc length para-
meteron dQ and ¢ € [—m/2, /2] is the angle of reflection. The collision map F: M — M
takes an inward unit vector at d Q to the unit vector after the next collision, and preserves
smooth measure dji = c - cos@ drdg on M, here ¢ is a normalization constant. Further-
more, IM U F~1 (3 M) is the singular set of F.

For billiards with focusing boundary components, the expansion and contraction (per
collision) may be weak during long series of successive reflections along certain trajecto-
ries. To study the mixing rates, one needs to find and remove the spots in the phase space
where expansion (contraction) slows down. Such spots come in several types and are easy
to identify, for example, see [13] and [12, Chap. 8]. Traditionally, we denote

900=23"QUd*Q,

where 3Q° is the union of flat boundaries, dQ~ contains focusing boundaries and 8 Q"
corresponds to dispersing boundaries. The collision space can be naturally divided into fo-
cusing, dispersing and neutral parts:

Mo={(r.9):red’Q},  Mi={(r.¢):red*Q)}.
Let
M={xeM_:a(x)el;, mn(F'x)el,,j#i}UM,. 9.1)

Note that M only contains the first collisions with the focusing arcs (the collisions with
the straight lines are skipped altogether) and all collisions on dispersing boundaries. The
map F preserves the measure u conditioned on M, which we denote by u=1[a (M1 '
Furthermore, F' has uniform expansion and contraction, since we skipped all collisions too
close to the “bad spots” in the collision space. But it has a larger singular set than the original
map. Let Sp = dM, then S =Sy U F1S, is the singular set of F.

Now we turn to two specific classes. The first is a non-smooth stadium. It is a convex do-
main Q bounded by two parallel straight segments and two minor arcs (i.e., arcs smaller than
a semicircle) with radius r3 and r4. Let Q satisfy the standard Bunimovich assumptions [3],
i.e. the complement of each arc in 9 Q to a full circle crosses both straight segments in 0 Q,
but does not cross the other arc; see Fig. 1 (left). As demonstrated in [13], the reduced map
F fails condition (1.3).

Theorem 5 For this type of the stadia, the correlations for the reduced billiard map

F: M — M decay exponentially.
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Fig. 1 Discontinuity manifolds T

of stadium /_\

N — /"//’ ],'3 W

s / 74

)

The detailed analysis of Bunimovich stadia was presented in [3, 5] and [12, Chap. 8], we
only focus on the novel parts here, see Fig. 1 (left).

The space M of the reduced map F is shown in Fig. 1 (right). The map F has two types of
infinite sequences of singularity curves, as shown on Fig. 1. The first type accumulates near
the top and bottom vertices xi, x; of the parallelograms, they are generated by trajectories
nearly “sliding” along the circular arcs. Denote these curves as Sy :={S;, : k=1,2,n € N}.
Andlet Sy =3dM US,, S+ = FT'S;. Denote M = M\ Sy. Then F: M\ S} — M\ S_; is
a C? diffeomorphism, which follows from the smoothness of F and S.

The second type singular curves accumulate near the other two vertices x3, x4 on the line
@ = %@, they are generated by trajectories experiencing many bounces off the two straight
sides of the stadium. Note that S consists of countably many curves {S,,n=0,1,2,...},
k =1,2,3,4, accumulating near singular points x; € M. For n € N, denote M, ; as the
connected region bounded by the adjacent curves S, s, S,—1x in M \ S;. M, is called a
n-cell. Points in M,, ;, k = 3, 4 experience exactly n reflections off the straight sides before
landing on the opposite arc of d Q. By geometric calculation as explained in [15], one of the
long boundaries of M, 3 can be approximated by the line segment

r=(@-—@)rs+-——,
2n cos 3
where [ is the length of the flat boundary segment and ¢ is the angle of x;. Furthermore,
the slanted line through x3 has equation r = 2r3(¢ — ¢3). Geometric structure in the vicinity
of x4 is similar.

It is also shown in [12, 13] that the expansion factor in M,, ; satisfies

and, ifk=1,2:

9.2
cn, if k =3,4, ©-2)

7|

where ¢; > 0 is a constant. We note that for k = 1, 2, the reduced map has an expansion n
during the sliding process and another expansion at least of order /n before the trajectory
landing on the opposite arc as explained in Exercise 8.36 in [12].

To prove the exponential decay of correlations for F', we need to verify (H.3) and one-
step expansion condition. For j = 1,2, the expansion factors are strong enough so that the
series of their reciprocals converges, > n~3/? < co. Thus they satisfy the ‘old’ one-step
expansion condition (1.3), so they can be easily handled as in [13]. For k = 3, 4, the series
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of the reciprocals of the expansion factors diverges, > n~! = 0o, and this is where our new
one-step expansion condition (3.8) is used.

For a typical unstable manifold W, we need to estimate the expansion factor on WNM,, ;.
It is enough to consider k = 3. Assume x € W, := W N M, ;, then the free path of x is

7,(x) = 2nr; cos 3.

Although r; might be different from ry, it follows from the existence of two parallel bound-
aries that

I'3 COS ()3 = I'4 COS Q4.
Let x = (r1,¢1) € Wy, and Fx = (r1, ¢1) € V,, := FW,. It is easy to verify, see [15]

2n cos
A(x) > "7"00 >n
COS ¢

A direct geometric calculation shows that M, ; has dimensions m in the stable di-
rection and

(nrycosgy) 'ly/ri + 1

in the unstable direction. Accordingly, for any unstable curve W that crosses finitely or
infinitely many of M, 3 and get cut into pieces W, with length / (2n%r3 cos ¢3) !, the minimal
expansion factor is n. Thus,

i (||vvvvn|| )q ||vv?|| N 2( ||1‘4//,:,|| >q ( I|vavn|I ) B

n=my
|Wn|
= Z ” |W|

n=m

§m0 E n2+’1<—

n=my —4q

(Here we used the fact that |W| = Zn —mo |W,|.) Although the right hand side above is
uniformly bounded, it is not < 1 as requlred by (3.8). To resolve the problem, we can select
an equivalent norm or consider high iterations of F' as explained in [13] to get (3.8). Thus
by Theorem 1, the return map F': M — M has an exponential mixing rate.

Our second class of billiards is made by Bunimovich tables [3, 12] whose focusing
boundaries contain major arcs (i.e. arcs greater than a semicircle). Such arcs add a new
type of ‘bad spots’ where the hyperbolicity is weak, see [13] and [12, Chap. 8]. For simplic-
ity, we assume that the major arcs are less than 240°, to prevent even further types of bad
spots. Also we assume that the boundary components are either focusing or dispersing, and
they intersect each other transversally (do not make cusps).

Theorem 6 For the above Bunimovich-type billiard tables with major arcs, the correlations
for the reduced billiard map F : M — M decay exponentially.

In this class of billiards, the trouble is caused by long series of collisions occurring at
one focusing arc where |¢| is near 0. In this case the trajectory is close to a periodic orbit
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Fig. 2 Singularities in the Y1
collision space of billiards with
major arcs

Y2

running along a diameter of the corresponding arc; we call such series diametrical (they can
occur only on a focusing arc larger than half-circle).

The space M of the reduced map and the structure of singularities is shown on Fig. 2.
The singularity set SN M of the map F consists of two types of infinite sequences of curves.
There are four infinite sequences of almost parallel straight segments running between the
nearby sides of M and converging to xy, X3, y1, ¥2, see Fig. 2. Curves of the first type ac-
cumulate near the top and bottom vertices y;, y,, they are generated by trajectories nearly
“sliding” along the circular arcs. Curves of the second type accumulate near two points x;
and x, (where M intersects the line ¢ = 0). These singularities are generated by trajecto-
ries experiencing arbitrary many collisions with the large arc while running almost along its
diameter. We only concentrate on singularities near x;, and denote by {S,} the sequence of
singularity curves converge to x;. Notice that the point x; has a trajectory of period 2. Thus
points x € M have trajectories running near a diameter of I';, they hit I'; on the opposite
side and then come back, so that the points x, F 2(x), F*(x), ... are close to each other.
Then the two sequences {F>"(x)} and {F>"*!(x)} move slowly along the arc I'; until one
of them finds an opening in I'; and escapes. So we let M,, denote the m-cell of x; bounded
by Sus Sm+1s M and 8F(M). It is easy to show the two slanted boundaries L, L, of the
parallelogram M have equations r = (m + w — 2¢)r and r = (w — 2¢)r, S,, has equation
r = (w — 4me)r. Accordingly, for any unstable curve W that crosses finitely many or infi-
nitely many of M,,’s, the minimal expansion factor on W N M,, satisfies is ~ 4nr. Thus for
any g € (0, 1),

oo

Z( |W| >q|WmMn,k|
n=nmg |F(WmMn,k)| |W|

|WmMnk|
< A, q
Z ( W]

n=m

1- 00
q 1

mO —2+q

= @y Z T T U—gdn
We use the fact that |W| is (4mor)~! and |W N M, ;| is of order (4n’r)~! in the above
inequality. Although the right hand side is uniformly bounded, but maybe not less than one.
In this case, we can pick an equivalent norm or consider high iterations of F' as explained
in [13] to get (3.8). Thus by Theorem 1, the return map F: M — M has exponential mixing
rate.
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